login
A339224
Number of essentially parallel unoriented series-parallel networks with n elements.
4
1, 1, 2, 5, 13, 41, 132, 470, 1730, 6649, 26122, 104814, 426257, 1754055, 7282630, 30470129, 128304158, 543303752, 2311904374, 9880776407, 42394198909, 182537610058, 788473887942, 3415782381520, 14837307126498, 64608442956047, 281975101347994, 1233237605651194
OFFSET
1,3
COMMENTS
See A339225 for additional details.
FORMULA
a(n) = (A007454(n) + A339158(n))/2.
EXAMPLE
In the following examples of series-parallel networks, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(2) = 1: (oo), (o|o).
a(3) = 2: (o|o|o), (o|oo).
a(4) = 5: (o|o|o|o), (o|o|oo), (oo|oo), (o|ooo), (o|o(o|o)).
PROG
(PARI) \\ here B(n) gives A003430 as a power series.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
B(n)={my(p=x+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+x)))); p}
seq(n)={my(q=subst(B((n+1)\2), x, x^2), s=x^2+q^2/(1+q), p=x+O(x^2)); for(n=1, n\2, my(t=x + q*(1 + p)); p=x + x*Ser(EulerT(Vec(t+(s-subst(t, x, x^2))/2))) - t); Vec(p+subst(x/(1+x), x, B(n)))/2}
CROSSREFS
Cf. A003430, A007454 (oriented), A339158 (achiral), A339223, A339225.
Sequence in context: A274909 A263308 A288388 * A247981 A149868 A343175
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Nov 27 2020
STATUS
approved