login
A339212
Dual-Zeckendorf self numbers: numbers not of the form k + A112310(k).
8
1, 4, 8, 10, 14, 17, 19, 28, 31, 33, 39, 41, 50, 53, 55, 59, 63, 66, 68, 74, 76, 85, 88, 90, 97, 106, 109, 111, 115, 119, 122, 124, 130, 132, 141, 144, 146, 153, 156, 158, 164, 166, 175, 178, 180, 187, 196, 199, 201, 205, 209, 212, 214, 220, 222, 231, 234, 236
OFFSET
1,2
COMMENTS
Analogous to self numbers (A003052) using the dual Zeckendorf representation (A104326) instead of decimal expansion.
REFERENCES
József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 384-386.
LINKS
J. L. Brown, Jr., A new characterization of the Fibonacci numbers, Fibonacci Quarterly, Vol. 3, No. 1 (1965) pp. 1-8.
Eric Weisstein's World of Mathematics, Self Number.
Wikipedia, Self number.
MATHEMATICA
fibTerms[n_] := Module[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; fr]; dzs[n_] := n + Module[{v = fibTerms[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] == 1 && v[[i + 1]] == 0 && v[[i + 2]] == 0, v[[i]] = 0; v[[i + 1]] = 1; v[[i + 2]] = 1; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, 0, Total[v[[i[[1, 1]] ;; -1]]]]]; m = 240; Complement[Range[m], Array[dzs, m]]
KEYWORD
nonn,base,changed
AUTHOR
Amiram Eldar, Nov 27 2020
STATUS
approved