login
A339182
Primes p such that q = p mod A001414(p-1) = p mod A001414(p+1) is prime.
2
251, 991, 1429, 1567, 1597, 1741, 2243, 3739, 4003, 4049, 4129, 4271, 4513, 5407, 6673, 6733, 9539, 9631, 10639, 14627, 14947, 16561, 18617, 18749, 18797, 19081, 20551, 24851, 28729, 31151, 37571, 42641, 49529, 50047, 54751, 56897, 59513, 65563, 73751, 75683, 77743, 89783, 91807, 96799, 104537
OFFSET
1,1
COMMENTS
Members p of A339180 such that p mod A001414(p-1) is prime.
LINKS
EXAMPLE
a(4) = 1567 is in the sequence because 1567 is prime, A001414(1566) = 2+3+3+3+29 = 40, A001414(1568) = 2+2+2+2+2+7+7=24, 1567 mod 40 = 1567 mod 24 = 7 is prime.
MAPLE
spf:= n -> add(t[1]*t[2], t=ifactors(n)[2]):
filter:= proc(p) local v;
if not isprime(p) then return false fi;
v:= p mod spf(p-1);
isprime(v) and p mod spf(p+1) = v
end proc:
select(filter, [seq(i, i=3..10^5, 2)]);
CROSSREFS
Sequence in context: A179231 A108833 A228672 * A008917 A025396 A185941
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Nov 26 2020
STATUS
approved