login
A339181
Primes p such that p == 1 (mod A001414(p-1)) and p == 1 (mod A001414(p+1)).
2
17, 31, 151, 241, 577, 3001, 3571, 4801, 12097, 21121, 23761, 28513, 61441, 65521, 77761, 113023, 126001, 171697, 174721, 178753, 193441, 244901, 287281, 364801, 582427, 616897, 677321, 976501, 1016401, 1425601, 1431847, 2015441, 2080801, 2483713, 2672671, 3089371, 4321931, 4667921, 5177761
OFFSET
1,1
COMMENTS
Members p of A339180 such that p == 1 (mod A001414(p-1)).
LINKS
EXAMPLE
a(3) = 151 is in the sequence because 151 is prime, A001414(150)=2+3+5+5=15, A001414(152)=2+2+2+19=25, 151 == 1 (mod 15) and 151 == 1 (mod 25).
MAPLE
spf:= n -> add(t[1]*t[2], t=ifactors(n)[2]):
select(p -> isprime(p) and p mod spf(p-1) = 1 and p mod spf(p+1) = 1, [seq(i, i=3..6*10^6, 2)]);
CROSSREFS
Sequence in context: A164041 A085598 A163443 * A027722 A060342 A045700
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Nov 26 2020
STATUS
approved