login
A339180
Primes p such that p mod A001414(p-1) = p mod A001414(p+1).
3
11, 17, 31, 151, 241, 251, 577, 727, 991, 1429, 1567, 1597, 1741, 2243, 2887, 3001, 3041, 3571, 3739, 4003, 4049, 4129, 4271, 4513, 4801, 5407, 6673, 6733, 6833, 7873, 8951, 9539, 9631, 10487, 10639, 11789, 12097, 14627, 14629, 14947, 16561, 16927, 18617, 18749, 18797, 19081, 19457, 20551, 21121
OFFSET
1,1
LINKS
EXAMPLE
a(4) = 151 is in the sequence because 151 is prime, A001414(150)=2+3+5+5=15, A001414(152)=2+2+2+19=25, and 151 mod 15 = 151 mod 25 = 1.
MAPLE
spf:= n -> add(t[1]*t[2], t=ifactors(n)[2]):
select(p -> isprime(p) and p mod spf(p-1) = p mod spf(p+1), [seq(i, i=3..100000, 2)]);
CROSSREFS
Includes A086711, A339181 and A339182.
Cf. A001414.
Sequence in context: A189324 A127703 A165667 * A086711 A039514 A098797
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Nov 26 2020
STATUS
approved