login
A339170
Number of compositions (ordered partitions) of n into distinct parts, the least being 7.
3
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 8, 8, 14, 14, 20, 20, 26, 26, 32, 32, 62, 62, 92, 116, 146, 170, 224, 248, 302, 350, 404, 572, 650, 818, 1016, 1328, 1526, 1958, 2300, 2852, 3314, 4010, 4592, 6248, 6974, 8750, 10436, 13196, 15722, 19442, 22952
OFFSET
0,16
FORMULA
G.f.: Sum_{k>=1} k! * x^(k*(k + 13)/2) / Product_{j=1..k-1} (1 - x^j).
EXAMPLE
a(24) = 8 because we have [17, 7], [9, 8, 7], [9, 7, 8], [8, 9, 7], [8, 7, 9], [7, 17], [7, 9, 8] and [7, 8, 9].
MATHEMATICA
nmax = 64; CoefficientList[Series[Sum[k! x^(k (k + 13)/2)/Product[1 - x^j, {j, 1, k - 1}], {k, 1, nmax}], {x, 0, nmax}], x]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 25 2020
STATUS
approved