%I #20 Jun 25 2023 21:11:50
%S 6,63,1540,119235,29059380,21898886793,50826232189144,
%T 361947451544923557,7884768474166076906420,
%U 524518303312357729182869149,106448798893410608983300257207398,65866487708413725073741586390176988083,124207126413825808953168887580780401519104028
%N Number of (undirected) cycles in the graph C_n X P_n.
%H Ed Wynn, <a href="/A339140/b339140.txt">Table of n, a(n) for n = 2..18</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GraphCycle.html">Graph Cycle</a>
%e If we represent each vertex with o, used edges with lines and unused edges with dots, and repeat the wraparound edges on left and right, the a(2) = 6 solutions for n = 2 are:
%e .o-o. -o.o- .o-o. -o.o- -o-o- .o.o.
%e | | | | | | | | . . . .
%e .o-o. .o-o. -o.o- -o.o- .o.o. -o-o-
%o (Python)
%o # Using graphillion
%o from graphillion import GraphSet
%o def make_CnXPk(n, k):
%o grids = []
%o for i in range(1, k + 1):
%o for j in range(1, n):
%o grids.append((i + (j - 1) * k, i + j * k))
%o grids.append((i + (n - 1) * k, i))
%o for i in range(1, k * n, k):
%o for j in range(1, k):
%o grids.append((i + j - 1, i + j))
%o return grids
%o def A339140(n):
%o universe = make_CnXPk(n, n)
%o GraphSet.set_universe(universe)
%o cycles = GraphSet.cycles()
%o return cycles.len()
%o print([A339140(n) for n in range(3, 7)])
%Y Cf. A140517, A222197, A296527, A339136, A339137, A339142, A339143.
%K nonn
%O 2,1
%A _Seiichi Manyama_, Nov 25 2020
%E a(10) and a(12) from _Seiichi Manyama_, Nov 25 2020
%E a(2), a(9), a(11) and a(13)-a(18) from _Ed Wynn_, Jun 25 2023