The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A339128 Odd composite integers m such that A086902(m-J(m,53)) == 2*J(m,53) (mod m), where J(m,53) is the Jacobi symbol. 8
 9, 25, 49, 51, 91, 121, 125, 153, 169, 289, 325, 361, 441, 529, 625, 637, 833, 841, 867, 961, 1183, 1225, 1369, 1633, 1681, 1849, 1921, 2209, 2599, 2601, 2651, 3481, 3721, 4225, 4489, 4625, 5041, 5125, 5329, 5537, 6241, 6889, 7225, 7267, 7497, 7921, 8125, 8281 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The generalized Pell-Lucas sequences of integer parameters (a,b) defined by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a, satisfy the identity V(p-J(p,D)) == 2*J(p,D) (mod p) when p is prime, b=-1 and D=a^2+4. This sequence has the odd composite integers with V(m-J(m,D)) == 2*J(m,D) (mod m). For a=7 and b=-1, we have D=53 and V(m) recovers A086902(m). REFERENCES D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020. D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021) D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted) LINKS MATHEMATICA Select[Range[3, 10000, 2], CompositeQ[#] && Divisible[LucasL[# - (j = JacobiSymbol[#, 53]), 7] - 2*j, #] &] (* Amiram Eldar, Nov 26 2020 *) CROSSREFS Cf. A086902. Cf. A339125 (a=1, b=-1), A339126 (a=3, b=-1), A339127 (a=5, b=-1), A339129 (a=3, b=1), A339130 (a=5, b=1), A339131 (a=7, b=1). Sequence in context: A247687 A075026 A339727 * A113659 A325701 A113745 Adjacent sequences:  A339125 A339126 A339127 * A339129 A339130 A339131 KEYWORD nonn AUTHOR Ovidiu Bagdasar, Nov 24 2020 EXTENSIONS More terms from Amiram Eldar, Nov 26 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 18 12:45 EDT 2021. Contains 343088 sequences. (Running on oeis4.)