login
A339059
Number of compositions (ordered partitions) of n into distinct parts congruent to 1 mod 4.
7
1, 1, 0, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 4, 6, 0, 1, 4, 6, 0, 1, 6, 12, 0, 1, 6, 18, 24, 1, 8, 24, 24, 1, 8, 30, 48, 1, 10, 42, 72, 1, 10, 48, 120, 121, 12, 60, 144, 121, 12, 72, 216, 241, 14, 84, 264, 361, 14, 96, 360, 601, 16, 114, 432, 841, 736, 126, 552, 1201, 738
OFFSET
0,7
FORMULA
G.f.: Sum_{k>=0} k! * x^(k*(2*k - 1)) / Product_{j=1..k} (1 - x^(4*j)).
EXAMPLE
a(15) = 6 because we have [9, 5, 1], [9, 1, 5], [5, 9, 1], [5, 1, 9], [1, 9, 5] and [1, 5, 9].
MATHEMATICA
nmax = 70; CoefficientList[Series[Sum[k! x^(k (2 k - 1))/Product[1 - x^(4 j), {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 22 2020
STATUS
approved