login
Sum of n-th powers of entries in the n-th row of Stern's triangle (A337277).
1

%I #11 May 30 2022 08:08:26

%S 1,3,13,147,4277,314403,58215317,27104094867,31830051961045,

%T 94398513955640643,709919097675516974293,13569078873978509433342387,

%U 661668739571948876787281152277,82526665791586458931717457637364323,26412772665617176235336349304356162390677

%N Sum of n-th powers of entries in the n-th row of Stern's triangle (A337277).

%H Alois P. Heinz, <a href="/A339025/b339025.txt">Table of n, a(n) for n = 0..28</a>

%p b:= proc(n) option remember; `if`(n=0, 1, (h-> [1, h[1], seq(

%p [h[i-1]+h[i], h[i]][], i=2..nops(h)), 1][])([b(n-1)]))

%p end:

%p a:= proc(n) option remember; add(i^n, i=[b(n)]) end:

%p seq(a(n), n=0..15);

%t nmax = 15;

%t T = Nest[Append[#, Flatten@Join[{1}, If[Length@# > 1, Map[{#1, #1 + #2}& @@ #&, Partition[#[[-1]], 2, 1]], {}], {#[[-1, -1]]}, {1}]]&, {{1}}, nmax];

%t a[n_] := T[[n+1]]^n // Total;

%t Table[a[n], {n, 0, nmax}] (* _Jean-François Alcover_, May 30 2022, after _Michael De Vlieger_ in A337277 *)

%Y Cf. A337277.

%K nonn

%O 0,2

%A _Alois P. Heinz_, Nov 19 2020