login
A339000
Triangle read by rows: T(n, k) = C(n, k)*Sum_{j=0..n} C(n, k-j)*C(n+j, j)/C(2*j, j).
1
1, 1, 2, 1, 7, 5, 1, 15, 32, 13, 1, 26, 111, 123, 34, 1, 40, 285, 603, 429, 89, 1, 57, 610, 2094, 2748, 1408, 233, 1, 77, 1155, 5845, 12170, 11196, 4437, 610, 1, 100, 2002, 14014, 42355, 60686, 42255, 13587, 1597, 1, 126, 3246, 30030, 124137, 254756, 271961, 150951, 40736, 4181
OFFSET
0,3
FORMULA
G.f.: A008459(x,y)/(1-x*y*A008459(x,y)^2).
T(n,n) = Fibonacci(2*n+1).
EXAMPLE
Triangle begins as:
1;
1, 2;
1, 7, 5;
1, 15, 32, 13;
1, 26, 111, 123, 34;
1, 40, 285, 603, 429, 89;
1, 57, 610, 2094, 2748, 1408, 233;
MATHEMATICA
T[n_, k_]:= With[{B=Binomial}, B[n, k]*Sum[B[n, k-j]*B[n+j, j]/B[2*j, j], {j, 0, n}]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 31 2024 *)
PROG
(Maxima)
T(n, m):=(binomial(n, m))*sum(((binomial(n, m-k))*(binomial(n+k, k)) )/(binomial(2*k, k)), k, 0, n);
(Magma)
b:=Binomial;
A339000:= func< n, k | b(n, k)*(&+[b(n, k-j)*b(n+j, j)/b(2*j, j): j in [0..n]]) >;
[A339000(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 31 2024
(SageMath)
b=binomial
def A339000(n, k): return b(n, k)*sum(b(n, k-j)*b(n+j, j)//b(2*j, j) for j in range(n+1))
flatten([[A339000(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 31 2024
CROSSREFS
Cf. A000045 (Fibonacci), A001519, A008459, A046748 (row sums).
Sequence in context: A143877 A319464 A019642 * A248811 A048505 A124821
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, Nov 18 2020
STATUS
approved