login
Irregular triangle read by rows where row n lists all squarefree semiprimes with prime indices summing to n.
14

%I #12 Dec 06 2020 06:28:18

%S 6,10,14,15,21,22,26,33,35,34,39,55,38,51,65,77,46,57,85,91,58,69,95,

%T 119,143,62,87,115,133,187,74,93,145,161,209,221,82,111,155,203,247,

%U 253,86,123,185,217,299,319,323,94,129,205,259,341,377,391,106,141

%N Irregular triangle read by rows where row n lists all squarefree semiprimes with prime indices summing to n.

%C A squarefree semiprime is a product of any two distinct prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.

%e Triangle begins:

%e 6

%e 10

%e 14 15

%e 21 22

%e 26 33 35

%e 34 39 55

%e 38 51 65 77

%e 46 57 85 91

%e 58 69 95 119 143

%e 62 87 115 133 187

%e 74 93 145 161 209 221

%e 82 111 155 203 247 253

%e 86 123 185 217 299 319 323

%t Table[Sort[Table[Prime[k]*Prime[n-k],{k,(n-1)/2}]],{n,3,10}]

%Y A004526 (shifted right) gives row lengths.

%Y A025129 (shifted right) gives row sums.

%Y A056239 gives sum of prime indices (Heinz weight).

%Y A339116 is a different triangle whose diagonals are these rows.

%Y A338904 is the not necessarily squarefree version, with row sums A024697.

%Y A338907/A338908 are the union of odd/even rows.

%Y A339114/A332765 are the row minima/maxima.

%Y A001358 lists semiprimes, with odd/even terms A046315/A100484.

%Y A005117 lists squarefree numbers.

%Y A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.

%Y A087112 groups semiprimes by greater factor.

%Y A168472 gives partial sums of squarefree semiprimes.

%Y A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.

%Y A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900.

%Y Cf. A000040, A001221, A014342, A098350, A112798, A320656, A338901, A338906, A339003, A339004, A339005, A339115.

%K nonn,tabf

%O 3,1

%A _Gus Wiseman_, Nov 28 2020