login
A338889
a(n) = L(L(L(n))) mod L(L(n)), where L = Lucas numbers = A000032.
4
1, 0, 3, 1, 1, 1, 0, 1, 1, 29, 7, 1, 19679776435706023589554718882448088434898811874077010905231927243854, 1, 7
OFFSET
0,3
COMMENTS
a(21) = 2992285359..7163788371 has 5090 decimal digits.
LINKS
FORMULA
a(n) = A262361(n) mod A005371(n).
MAPLE
b:= proc(n) local r, M, p; r, M, p:=
<<1|0>, <0|1>>, <<0|1>, <1|1>>, n;
do if irem(p, 2, 'p')=1 then r:=
`if`(nargs=1, r.M, r.M mod args[2]) fi;
if p=0 then break fi; M:=
`if`(nargs=1, M.M, M.M mod args[2])
od; (r.<<2, 1>>)[1$2]
end:
a:= n-> (h-> b(h$2) mod h)(b(b(n))):
seq(a(n), n=0..15);
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 14 2020
STATUS
approved