OFFSET
1,2
COMMENTS
Also the Bell transform of A323295.
LINKS
Peter Luschny, The Bell transform.
FORMULA
E.g.f.: exp(Sum_{n>0} u*d(n)*x^n), where d(n) is the number of divisors of n.
T(n; u) = Sum_{k=1..n} T(n,k)*u^k is given by T(n; u) = u * (n-1)! * Sum_{k=1..n} k*d(k)*T(n-k; u)/(n-k)!, T(0; u) = 1.
T(n,k) = (n!/k!) * Sum_{i_1,i_2,...,i_k > 0 and i_1+i_2+...+i_k=n} Product_{j=1..k} d(i_j).
EXAMPLE
exp(Sum_{n>0} u*d(n)*x^n) = 1 + u*x + (4*u+u^2)*x^2/2! + (12*u+12*u^2+u^3)*x^3/3! + ... .
Triangle begins:
1;
4, 1;
12, 12, 1;
72, 96, 24, 1;
240, 840, 360, 40, 1;
2880, 7200, 4920, 960, 60, 1;
10080, 70560, 65520, 19320, 2100, 84, 1;
161280, 745920, 887040, 362880, 58800, 4032, 112, 1;
...
MATHEMATICA
T[n_, 0] := Boole[n == 0]; T[n_, k_] := T[n, k] = Sum[Boole[j > 0] * Binomial[n - 1, j - 1] * j! * DivisorSigma[0, j] * T[n - j, k - 1], {j, 0, n - k + 1}]; Table[T[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Amiram Eldar, Nov 13 2020 *)
PROG
(PARI) {T(n, k) = my(u='u); n!*polcoef(polcoef(prod(j=1, n, exp(x^j/(1-x^j+x*O(x^n)))^u), n), k)}
(PARI) a(n) = if(n<1, 0, n!*numdiv(n));
T(n, k) = if(k==0, 0^n, sum(j=0, n-k+1, binomial(n-1, j-1)*a(j)*T(n-j, k-1)))
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Nov 13 2020
STATUS
approved