login
A338858
Decimal expansion of Sum_{k>=0} (zeta(4*k+3)-1).
2
2, 1, 0, 9, 3, 2, 9, 9, 2, 7, 6, 2, 0, 0, 4, 9, 1, 8, 9, 3, 9, 1, 9, 5, 2, 8, 6, 4, 0, 2, 1, 5, 6, 5, 7, 6, 7, 5, 9, 2, 1, 1, 1, 5, 3, 8, 5, 1, 7, 3, 2, 6, 1, 1, 0, 1, 9, 3, 7, 8, 4, 7, 9, 5, 0, 1, 8, 8, 6, 4, 2, 0, 7, 6, 8, 4, 7, 2, 6, 6, 2, 1, 6, 0, 2, 0, 8, 8, 8, 6, 3, 9, 3, 6, 0, 0, 2, 1, 0, 6, 6, 4, 1, 9, 8
OFFSET
0,1
COMMENTS
For additional comments and generalization see A339604.
FORMULA
Equals Sum_{k>=2} k/(k^4-1).
Equals -1/8 + gamma/2 + Re(Psi(i))/2, where Psi is the digamma function, gamma is the Euler-Mascheroni constant (see A001620), and i=sqrt(-1).
Equals -1/8 + Re(H(I))/2, where H is the harmonic number function.
EXAMPLE
0.2109329927620049189391952864...
MATHEMATICA
RealDigits[N[Re[Sum[Zeta[4 n + 3] - 1, {n, 0, Infinity}]], 105]][[1]]
PROG
(PARI) suminf(k=0, zeta(4*k+3)-1) \\ Michel Marcus, Dec 24 2020
CROSSREFS
Cf. A256919 (4*k), A339097 (4*k+1), A339083 (4k+2).
Sequence in context: A265012 A285285 A374491 * A201897 A246658 A274740
KEYWORD
nonn,cons
AUTHOR
Artur Jasinski, Dec 24 2020
STATUS
approved