The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A338858 Decimal expansion of Sum_{k>=0} (zeta(4*k+3)-1). 2
 2, 1, 0, 9, 3, 2, 9, 9, 2, 7, 6, 2, 0, 0, 4, 9, 1, 8, 9, 3, 9, 1, 9, 5, 2, 8, 6, 4, 0, 2, 1, 5, 6, 5, 7, 6, 7, 5, 9, 2, 1, 1, 1, 5, 3, 8, 5, 1, 7, 3, 2, 6, 1, 1, 0, 1, 9, 3, 7, 8, 4, 7, 9, 5, 0, 1, 8, 8, 6, 4, 2, 0, 7, 6, 8, 4, 7, 2, 6, 6, 2, 1, 6, 0, 2, 0, 8, 8, 8, 6, 3, 9, 3, 6, 0, 0, 2, 1, 0, 6, 6, 4, 1, 9, 8 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS For additional comments and generalization see A339604. LINKS FORMULA Equals Sum_{k>=2} k/(k^4-1). Equals -1/8 + gamma/2 + Re(Psi(i))/2, where Psi is the digamma function, gamma is the Euler-Mascheroni constant (see A001620), and i=sqrt(-1). Equals -1/8 + Re(H(I))/2, where H is the harmonic number function. EXAMPLE 0.2109329927620049189391952864... MATHEMATICA RealDigits[N[Re[Sum[Zeta[4 n + 3] - 1, {n, 0, Infinity}]], 105]][[1]] PROG (PARI) suminf(k=0, zeta(4*k+3)-1) \\ Michel Marcus, Dec 24 2020 CROSSREFS Cf. A256919 (4*k), A339097 (4*k+1), A339083 (4k+2). Cf. A024006, A338815, A339135, A339529, A339530, A339604, A339605, A339606. Sequence in context: A322222 A265012 A285285 * A201897 A246658 A274740 Adjacent sequences:  A338855 A338856 A338857 * A338859 A338860 A338861 KEYWORD nonn,cons AUTHOR Artur Jasinski, Dec 24 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 18:08 EDT 2021. Contains 343135 sequences. (Running on oeis4.)