OFFSET
1,2
FORMULA
G.f.: Sum_{k >= 1} k * x^k/(1 - x^k)^(k+1).
If p is prime, a(p) = 2*p.
MATHEMATICA
a[n_] := DivisorSum[n, # * Binomial[# + n/# - 1, #] &]; Array[a, 100] (* Amiram Eldar, Apr 22 2021 *)
PROG
(PARI) a(n) = sumdiv(n, d, d*binomial(d+n/d-1, d));
(PARI) my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, k*x^k/(1-x^k)^(k+1)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 22 2021
STATUS
approved