login
A338567
Primes p such that (q*r) mod p is prime, where q and r are the next primes after p.
3
3, 5, 7, 13, 19, 23, 31, 89, 199
OFFSET
1,1
COMMENTS
a(10) > 2*10^10 if it exists. - Michael S. Branicky, Mar 05 2021
From Jason Yuen, Jun 11 2024: (Start)
All terms satisfy (q-p)*(r-p) > p.
Data from A002386 and A005250 show that a(10) > 18361375334787046697 if it exists. (End)
EXAMPLE
a(4)=13 is in the sequence because it is prime, the next two primes are 17 and 19, and (17*19) mod 13 = 11, which is prime.
MAPLE
R:= NULL: q:= 2: r:= 3:
count:= 0:
for i from 1 to 10000 do
p:= q; q:= r; r:= nextprime(r);
if isprime(q*r mod p) then count:= count+1; R:= R, p fi
od:
R;
PROG
(Python)
from sympy import nextprime, isprime
def afind(limit):
p, q, r = 1, 2, 3
while p < limit:
p, q, r = q, r, nextprime(r)
if isprime(q*r % p): print(p, end=", ")
afind(200) # Michael S. Branicky, Mar 05 2021
CROSSREFS
Cf. A338566, A338570. Contained in A338577.
Sequence in context: A155189 A065384 A354217 * A340339 A126108 A100859
KEYWORD
nonn,more,hard
AUTHOR
J. M. Bergot and Robert Israel, Nov 02 2020
STATUS
approved