OFFSET
1,1
COMMENTS
The rays are evenly spaced around each point. The first ray from each point goes opposite to the direction to the center of the circle. Should a ray hit another point it is terminated there.
See A338421 for illustrations.
LINKS
Lars Blomberg, Table of n, a(n) for n = 1..642
FORMULA
Conjectured for 3 <= n <= 642.
Select the row in the table below for which r = n mod m. Then a(n)=(a*n^2 + b*n + c)/d.
+=================================+
| r | m | a | b | c | d |
+---------------------------------+
| 2 | 4 | 3 | -5 | 10 | 1 |
| 1 | 8 | 6 | 13 | -3 | 2 |
| 3 | 8 | 6 | 13 | -5 | 2 |
| 4 | 8 | 3 | -9 | 24 | 1 |
| 5 | 8 | 6 | 13 | 25 | 2 |
| 7 | 8 | 6 | 13 | -9 | 2 |
| 0 | 48 | 3 | -35 | -72 | 1 |
| 8, 40 | 48 | 3 | -35 | 160 | 1 |
| 16, 32 | 48 | 3 | -35 | 184 | 1 |
| 24 | 48 | 3 | -35 | 96 | 1 |
+=================================+ (End)
EXAMPLE
For n=1 there are four rays that do not intersect, so a(1)=4.
PROG
(PARI)
a(n)={if(
n==1, 4,
n==2, 8,
n%4==2, 3*n^2 - 5*n + 10,
n%8==1, (6*n^2 + 13*n - 3)/2,
n%8==3, (6*n^2 + 13*n - 5)/2,
n%8==4, 3*n^2 - 9*n + 24,
n%8==5, (6*n^2 + 13*n + 25)/2,
n%8==7, (6*n^2 + 13*n - 9)/2,
n%48==0, 3*n^2 - 35*n - 72,
n%48==8||n%48==40, 3*n^2 - 35*n + 160,
n%48==16||n%48==32, 3*n^2 - 35*n + 184,
n%48==24, 3*n^2 - 35*n + 96,
-1); }
vector(642, n, a(n))
CROSSREFS
KEYWORD
nonn
AUTHOR
Lars Blomberg, Oct 26 2020
STATUS
approved