%I #21 Nov 03 2020 05:37:27
%S 1,1,0,1,1,0,1,0,1,0,1,1,1,1,0,1,0,1,0,1,0,1,1,0,1,1,1,0,1,0,1,0,1,0,
%T 1,0,1,1,1,1,1,1,1,1,0,1,0,1,0,1,0,1,0,1,0
%N A (0,1)-matrix in the first quadrant read by downward antidiagonals: an example of a uniformly recurrent 2-D word in which row 0 is non-recurrent.
%C Proposition 5 of Charlier et al. (2020) gives the formal definition of the matrix.
%D Charlier, Émilie, Svetlana Puzynina, and Élise Vandomme. "Recurrence along directions in multidimensional words." Discrete Mathematics 343.10 (2020): 112006.
%H Émilie Charlier, Svetlana Puzynina, and Élise Vandomme, <a href="https://arxiv.org/abs/1907.00192">Recurrence along directions in multidimensional words</a>, arXiv:1907.00192 [math.CO], 2019-2020.
%e The array begins:
%e ...........
%e 1 1 1 1 1 1 1 1 1 1 1 1 ...
%e 1 0 0 0 1 0 0 0 1 0 0 0 ...
%e 1 1 1 1 1 1 1 1 1 1 1 1 ...
%e 1 0 1 0 1 0 1 0 1 0 1 0 ...
%e 1 1 1 1 1 1 1 1 1 1 1 1 ...
%e 1 0 0 0 0 0 0 0 1 0 0 0 ...
%e 1 1 1 1 1 1 1 1 1 1 1 1 ...
%e 1 0 1 0 1 0 1 0 1 0 1 0 ...
%e 1 1 1 1 1 1 1 1 1 1 1 1 ...
%e 1 0 0 0 1 0 0 0 1 0 0 0 ...
%e 1 1 1 1 1 1 1 1 1 1 1 1 ...
%e 1 0 1 0 1 0 1 0 1 0 1 0 ...
%e 1 1 1 1 1 1 1 1 1 1 1 1 ...
%e 1 0 0 0 0 0 0 0 0 0 0 0 ...
%e This is to be read from bottom to top and left to right.
%e The initial antidiagonals (starting in bottom left corner) are:
%e 1,
%e 1,0,
%e 1,1,0,
%e 1,0,1,0,
%e 1,1,1,1,0,
%e 1,0,1,0,1,0,
%e 1,1,0,1,1,1,0,
%e 1,0,1,0,1,0,1,0,
%e 1,1,1,1,1,1,1,1,0,
%e 1,0,1,0,1,0,1,0,1,0,
%e ...
%Y Cf. A338353.
%K nonn,tabl,more
%O 0
%A _N. J. A. Sloane_, Nov 02 2020