login
A338239
Values z of primitive solutions (x, y, z) to the Diophantine equation 2*x^3 + 2*y^3 + z^3 = 1.
0
-1, 1, -5, 11, -17, 19, 29, -31, -37, -61, 79, -85, 113, -127, -143, 145, -209, 305, 361, -485, 487, 545, 647, 667, 811, -1091, -1151, 1153, -1235, -1429, -1525, 1597, 1699, -1793, -2249, 2251, -2533, 2627, -2677, 2977, -2981, 3089, -3295, 3739, -3887, 3889
OFFSET
1,3
COMMENTS
Terms are arranged in order of increasing absolute value (if equal, the negative number comes first).
When x = (3*c)*t - (9*a)*t^4, y = (9*a)*t^4, z = c - (9*a)*t^3; a*x^3 + a*y^3 + c*z^3 = c^4. Let a = 2, c = 1, then 1 - 18*n^3 and 1 + 18*n^3 are terms of the sequence. Also, -A337928 and A337929 are subsequences.
EXAMPLE
2*25^3 + 2*(-64)^3 + 79^3 = 2*164^3 + 2*(-167)^3 + 79^3 = 1, 79 is a term.
MATHEMATICA
Clear[t]
t = {};
Do[y = ((1 - 2x^3 - z^3)/2)^(1/3) /. (-1)^(1/3) -> -1;
If[IntegerQ[y] && GCD[x, y, z] == 1, AppendTo[t, z]], {z, -4000, 4000}, {x, -Round[(Abs[1 + z^3]/6)^(1/2)], Round[(Abs[1 + z^3]/6)^(1/2)]}]
u = Union@t;
v = Table[(-1)^n*Floor[(n + 1)/2], {n, 0, 8001}];
Select[v, MemberQ[u, #] &]
KEYWORD
sign
AUTHOR
XU Pingya, Oct 18 2020
STATUS
approved