login
Terms of A338039 that are repeated concatenations of smaller integers.
3

%I #21 Oct 28 2021 01:59:48

%S 1818,8181,181818,198198,405405,484848,504504,565656,576576,656565,

%T 675675,818181,848484,891891,11311131,13041304,13111311,18181818,

%U 19981998,22622262,26222622,33933393,39333933,40314031,41544154,45144514,46364636,63646364,81818181,87498749,89918991,94789478

%N Terms of A338039 that are repeated concatenations of smaller integers.

%H Michel Marcus, <a href="/A338166/b338166.txt">Table of n, a(n) for n = 1..1050</a> (up to 15 digits).

%H Daniel Tsai, <a href="https://arxiv.org/abs/2010.03151">A recurring pattern in natural numbers of a certain property</a>, arXiv:2010.03151 [math.NT], 2020.

%H Daniel Tsai, <a href="http://math.colgate.edu/~integers/v32/v32.mail.html">A recurring pattern in natural numbers of a certain property</a>, Integers (2021) Vol. 21, Article #A32.

%t Block[{f}, f[1] = 0; f[n_] := Plus @@ #[[All, 1]] + Plus @@ Select[#[[All, -1]], # > 1 &] &@ FactorInteger[n]; Select[Union@ Flatten@ Table[Union@ Flatten@ Map[Function[k, Map[FromDigits[Join @@ ConstantArray[IntegerDigits[#], n/k]] &, Range[10^(k - 1), 10^k - 1]]], Most@ Divisors[n]], {n, 3, 8}], And[Mod[#1, 10] != 0, #2 != #1, f[#1] == f[#2]] & @@ {#, IntegerReverse[#]} &] ] (* _Michael De Vlieger_, May 27 2021, after _Amiram Eldar_ at A338039 *)

%o (PARI) f(n) = my(f=factor(n)); vecsum(f[,1]) + sum(k=1, #f~, if (f[k,2]!=1, f[k,2])); \\ A338038

%o isok(m) = my(r=fromdigits(Vecrev(digits(m)))); if ((r != m) && (f(r) == f(m)), return(m));

%o listc(c) = {my(list = List()); fordiv(c, d, if ((d != 1) && (d != c), for(k=10^(d-1), 10^d, if (k % 10, my(sk = Str(k), skk = sk); for (j=1, c/d-1, sk = concat(sk, skk)); if (isok(eval(sk)), listput(list, eval(sk))););););); list;}

%o lista(nn) = {my(list = List()); forcomposite(c=1, nn, my(clist = Vec(listc(c))); for (k=1, #clist, listput(list, clist[k]));); vecsort(Vec(list),,8);}

%o lista(8) \\ to get terms up to 8 digits

%Y Cf. A338038, A338039.

%K nonn,base

%O 1,1

%A _Michel Marcus_, Oct 14 2020