The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A338154 a(n) is the number of acyclic orientations of the edges of the n-antiprism. 4
 426, 4968, 50640, 486930, 4547088, 41796168, 380789562, 3451622904, 31194607488, 281440825122, 2536622917920, 22848990484344, 205743704494026, 1852238413383048, 16673036119790640, 150072652217086770, 1350735146332489008, 12157047307392618408 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,1 LINKS Peter Kagey, Table of n, a(n) for n = 3..1000 Eric Weisstein's World of Mathematics, Antiprism Graph Wikipedia, Acyclic orientation FORMULA Conjectures from Colin Barker, Oct 13 2020: (Start) G.f.: 6*x^3*(71 - 379*x + 612*x^2 - 324*x^3) / ((1 - x)*(1 - 9*x)*(1 - 7*x + 9*x^2)). a(n) = 17*a(n-1) - 88*a(n-2) + 153*a(n-3) - 81*a(n-4) for n>6. (End) a(n) = -2^(1-n)*((7-sqrt(13))^n + (7+sqrt(13))^n) + 9^n + 5. - Peter Kagey, Nov 15 2020 EXAMPLE For n = 3, the 3-antiprism is the octahedron (3-dimensional cross-polytope), so a(3) = A033815(3) = 426. MATHEMATICA A338154[n_] := Round[-2^(1-n)*((7 - Sqrt[13])^n + (7 + Sqrt[13])^n) + 9^n + 5] (* Peter Kagey, Nov 15 2020 *) CROSSREFS Cf. A077263, A124352, A124353, A192742, A284699, A284700, A284701, A287988, A294152, A297384. Cf. A033815 (cross-polytope), A058809 (wheel), A334247 (hypercube), A338152 (demihypercube), A338153 (prism). Sequence in context: A252411 A236605 A236699 * A173374 A227484 A272131 Adjacent sequences:  A338151 A338152 A338153 * A338155 A338157 A338158 KEYWORD nonn AUTHOR Peter Kagey, Oct 13 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 11 15:49 EDT 2021. Contains 342886 sequences. (Running on oeis4.)