login
A338154
a(n) is the number of acyclic orientations of the edges of the n-antiprism.
4
426, 4968, 50640, 486930, 4547088, 41796168, 380789562, 3451622904, 31194607488, 281440825122, 2536622917920, 22848990484344, 205743704494026, 1852238413383048, 16673036119790640, 150072652217086770, 1350735146332489008, 12157047307392618408
OFFSET
3,1
COMMENTS
Conjectured linear recurrence and g.f. confirmed by Kagey's formula. - Ray Chandler, Mar 10 2024
LINKS
Eric Weisstein's World of Mathematics, Antiprism Graph
FORMULA
Conjectures from Colin Barker, Oct 13 2020: (Start)
G.f.: 6*x^3*(71 - 379*x + 612*x^2 - 324*x^3) / ((1 - x)*(1 - 9*x)*(1 - 7*x + 9*x^2)).
a(n) = 17*a(n-1) - 88*a(n-2) + 153*a(n-3) - 81*a(n-4) for n>6.
(End)
a(n) = -2^(1-n)*((7-sqrt(13))^n + (7+sqrt(13))^n) + 9^n + 5. - Peter Kagey, Nov 15 2020
EXAMPLE
For n = 3, the 3-antiprism is the octahedron (3-dimensional cross-polytope), so a(3) = A033815(3) = 426.
MATHEMATICA
A338154[n_] := Round[-2^(1-n)*((7 - Sqrt[13])^n + (7 + Sqrt[13])^n) + 9^n + 5] (* Peter Kagey, Nov 15 2020 *)
CROSSREFS
Cf. A033815 (cross-polytope), A058809 (wheel), A334247 (hypercube), A338152 (demihypercube), A338153 (prism).
Sequence in context: A252411 A236605 A236699 * A173374 A227484 A272131
KEYWORD
nonn
AUTHOR
Peter Kagey, Oct 13 2020
STATUS
approved