OFFSET
1,1
COMMENTS
The sequence is finite with the final term a(1022) having 94 decimal digits.
Instead of 11, other choices k of the number of initial odd primes and number of previous terms to consider when picking the next prime give different sequence lengths L and final terms m. Values are shown in the following table.
=======================================================
k L log(m) m
-----+-------------------------------------------------
4 | 13 6.42 53
5 | 18 7.77 2377
6 | 26 8.42 4547
7 | 66 19.32 246069541
8 | 176 46.61 174401554254658978301
9 | 313 74.93 348416283338512248746770398000349
10 | 657 155.19 25092330625366012736545948...
11 | 1022 214.78 18914773701982111040121422...
12 | 2575 596.03 71213007235221948920803479...
13 | 5142 1172.46 15648776898352974934674946...
LINKS
Jinyuan Wang, Table of n, a(n) for n = 1..1022
PROG
(PARI)
F(u, m, test)={my(recurse(k, s, b)=if(s<b, if(s>m&&test(s), b=s); while(k<#u, k++; b=self()(k, s+u[k], b))); b); recurse(0, 0, oo)}
lista(n, k=11)={my(v=vector(k)); for(r=1, n, my(t=if(r<=k, prime(r+1), F(v, v[#v], ispseudoprime))); print1(t, ", "); if(t==oo, break); v=concat(v[2..k], t))}
{ lista(60) } \\ Andrew Howroyd, Oct 13 2020
CROSSREFS
KEYWORD
nonn,fini,full
AUTHOR
Anthony Winkelspecht, Oct 11 2020
STATUS
approved