The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A338123 Place three points evenly spaced around a circle, draw n evenly spaced rays from each of the points, a(n) is the number of vertices thus created. See Comments for details. 4
 3, 4, 15, 19, 33, 31, 63, 55, 78, 82, 120, 67, 162, 154, 189, 175, 261, 217, 327, 259, 360, 370, 456, 283, 534, 514, 579, 523, 705, 619, 807, 703, 858, 874, 1008, 691, 1122, 1090, 1185, 1111, 1365, 1237, 1503, 1339, 1572, 1594, 1776, 1339, 1926, 1882, 2007, 1891 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The rays are evenly spaced around each point. The first ray from each point goes opposite to the direction to the center of the circle. Should a ray hit another point it is terminated there. See A338122 for illustrations. LINKS Lars Blomberg, Table of n, a(n) for n = 1..800 FORMULA a(n) = 2160-a(n-4)+a(n-12)+a(n-16)+a(n-60)+a(n-64)-a(n-72)-a(n-76), n>78. (conjectured) From Lars Blomberg, Oct 25 2020: (Start) Conjectured for 3 <= n <= 800. Select the row in the table below for which r = n mod m. Then a(n)=(a*n^2 + b*n + c)/d. +===========================================+ |               r |   m | a |   b |   c | d | +-------------------------------------------+ |               5 |   6 | 3 |  10 |   7 | 4 | |               1 |  12 | 3 |  10 |  11 | 4 | |           2, 10 |  12 | 3 |     |  28 | 4 | |               3 |  12 | 3 |   4 |  21 | 4 | |               6 |  12 | 3 | -10 |  76 | 4 | |               7 |  12 | 3 |  10 |  35 | 4 | |               9 |  12 | 3 |   4 |  33 | 4 | |           4, 20 |  24 | 3 | -12 |  76 | 4 | |           8, 16 |  24 | 3 | -12 | 124 | 4 | |               0 | 120 | 3 | -40 | -20 | 4 | | 12, 36, 84, 108 | 120 | 3 | -40 | 316 | 4 | |  24, 48, 72, 96 | 120 | 3 | -40 | 364 | 4 | |              60 | 120 | 3 | -40 | -68 | 4 | +===========================================+ (End) EXAMPLE For n=1 there are three rays that do not intersect, so a(1)=3. PROG (PARI) a(n)=if( \ n%6==5, (3*n^2 + 10*n + 7)/4, \ n%12==1, (3*n^2 + 10*n + 11)/4, \ n%12==2||n%12==10, (3*n^2 + 28)/4, \ n%12==3, (3*n^2 + 4*n + 21)/4, \ n%12==6, (3*n^2 - 10*n + 76)/4, \ n%12==7, (3*n^2 + 10*n + 35)/4, \ n%12==9, (3*n^2 + 4*n + 33)/4, \ n%24==4||n%24==20, (3*n^2 - 12*n + 76)/4, \ n%24==8||n%24==16, (3*n^2 - 12*n + 124)/4, \ n%120==0, (3*n^2 - 40*n - 20)/4, \ n%120==12||n%120==36||n%120==84||n%120==108, (3*n^2 - 40*n + 316)/4, \ n%120==24||n%120==48||n%120==72||n%120==96, (3*n^2 - 40*n + 364)/4, \ n%120==60, (3*n^2 - 40*n - 68)/4, \ -1); vector(798, n, a(n+2)) CROSSREFS Cf. A338042 (two start points), A338122 (regions), A338124 (edges). Sequence in context: A325186 A053359 A056742 * A041435 A136210 A041819 Adjacent sequences:  A338120 A338121 A338122 * A338124 A338125 A338126 KEYWORD nonn AUTHOR Lars Blomberg, Oct 11 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 10 11:35 EDT 2021. Contains 342845 sequences. (Running on oeis4.)