OFFSET
0,2
COMMENTS
Equivalently, the graph can be described as the graph on 3*n + 1 vertices with labels 0..3*n and with i and j adjacent iff A011655(i + j) = 1.
These graphs are cographs.
LINKS
H-Y. Ching, R. Florez, and A. Mukherjee, Families of Integral Cographs within a Triangular Arrays, arXiv:2009.02770 [math.CO], 2020.
Eric Weisstein's World of Mathematics, Spanning Tree
FORMULA
a(n) = (n + 1)*(2*n)^n*(2*n + 1)^(2*(n - 1)).
EXAMPLE
The adjacency matrix of the graph associated with n = 2 is: (compare A204437)
[0, 1, 1, 0, 1, 1, 0]
[1, 0, 0, 1, 1, 0, 1]
[1, 0, 0, 1, 0, 1, 1]
[0, 1, 1, 0, 1, 1, 0]
[1, 1, 0, 1, 0, 0, 1]
[1, 0, 1, 1, 0, 0, 1]
[0, 1, 1, 0, 1, 1, 0]
a(2) = 1200 because the graph has 1200 spanning trees.
MATHEMATICA
Table[(n + 1)*(2 n)^n*(2 n + 1)^(2 (n - 1)), {n, 1, 10}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Rigoberto Florez, Oct 10 2020
STATUS
approved