OFFSET
1,1
COMMENTS
If p is a prime, then A085447(p)==6 (mod p).
This sequence contains the odd composite integers for which the congruence holds.
The generalized Pell-Lucas sequence of integer parameters (a,b) defined by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a, satisfy the identity V(p)==a (mod p) whenever p is prime and b=-1,1.
For a=6, b=-1, V(m) recovers A085447(m).
REFERENCES
D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021)
MATHEMATICA
Select[Range[3, 20000, 2], CompositeQ[#] && Divisible[LucasL[#, 6] - 6, #] &]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ovidiu Bagdasar, Oct 08 2020
EXTENSIONS
More terms from Amiram Eldar, Oct 09 2020
STATUS
approved