login
G.f. A(x) satisfies: Sum_{n>=0} x^(n^2) * A(x)^n = Sum_{n>=0} x^n * (1+x)^(n^2).
1

%I #11 Oct 06 2020 19:38:50

%S 1,2,5,15,53,217,973,4735,24686,137026,805273,4986541,32409056,

%T 220327688,1562196894,11522725486,88215618320,699573288808,

%U 5736354452771,48556636776122,423674461139747,3805446588538974,35142868684678717,333303148345306269,3243121812554272131

%N G.f. A(x) satisfies: Sum_{n>=0} x^(n^2) * A(x)^n = Sum_{n>=0} x^n * (1+x)^(n^2).

%H Paul D. Hanna, <a href="/A337850/b337850.txt">Table of n, a(n) for n = 0..200</a>

%e G.f.: A(x) = 1 + 2*x + 5*x^2 + 15*x^3 + 53*x^4 + 217*x^5 + 973*x^6 + 4735*x^7 + 24686*x^8 + 137026*x^9 + 805273*x^10 + ...

%e such that the following series are equal

%e B(x) = 1 + x*A(x) + x^4*A(x)^2 + x^9*A(x)^3 + x^16*A(x)^4 + x^25*A(x)^5 + x^36*A(x)^6 + x^49*A(x)^7 + ... + x^(n^2)*A(x)^n + ...

%e B(x) = 1 + x*(1+x) + x^2*(1+x)^4 + x^3*(1+x)^9 + x^4*(1+x)^16 + x^5*(1+x)^25 + x^6*(1+x)^36 + x^7*(1+x)^49 + ... + x^n*(1+x)^(n^2) + ...

%e where

%e B(x) = 1 + x + 2*x^2 + 5*x^3 + 16*x^4 + 57*x^5 + 231*x^6 + 1023*x^7 + 4926*x^8 + 25483*x^9 + 140601*x^10 + ... + A121689(n)*x^n + ...

%o (PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = -polcoeff( sum(m=0, #A, x^(m^2)*Ser(A)^m - x^m*(1+x +x*O(x^#A) )^(m^2) ), #A) ); A[n+1]}

%o for(n=0, 35, print1(a(n), ", "))

%Y Cf. A325298, A121689.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Sep 26 2020