login
A337793
Number of graceful labelings of the complete bipartite graph K_{n,n}.
1
2, 16, 144, 9216, 57600, 14515200, 203212800, 65028096000, 1580182732800, 421382062080000, 6373403688960000, 38546345510830080000, 310206304349061120000, 212801524783455928320000, 47880343076277583872000000
OFFSET
1,1
COMMENTS
For n > 1, a(n) is a nonzero multiple of 4*(n!)^2. - Bert Dobbelaere, Sep 30 2020
LINKS
Eric Weisstein's World of Mathematics, Complete Bipartite Graph
Eric Weisstein's World of Mathematics, Graceful Labeling
FORMULA
a(n) = 4*(n!)^2 A335619(n) for n > 1.
CROSSREFS
Cf. A335619 (number of fundamentally different graceful labelings).
Sequence in context: A333727 A024915 A162440 * A103885 A262266 A124578
KEYWORD
nonn,more
AUTHOR
Eric W. Weisstein, Sep 22 2020
EXTENSIONS
a(5)-a(9) from Bert Dobbelaere, Sep 30 2020
a(10)-a(15) (using terms in A335619) from Alois P. Heinz, Dec 08 2020
STATUS
approved