The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A337715 Numbers that are the product of two distinct odd numbers x*y such that 2^x (mod y) = 2^y (mod x) = 2. 1
 341, 525, 651, 765, 1155, 1387, 1683, 1935, 2047, 2701, 3277, 3751, 4033, 4165, 4305, 4369, 4455, 4681, 5461, 5525, 5715, 6025, 6643, 7161, 7239, 7957, 8265, 8321, 8925, 9471, 9605, 10261, 10571, 10965, 12103, 12325, 13113, 13747, 13981, 14491, 15709, 16275, 16485 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Equivalently, terms of A176970 that are not square of odd primes. Every square of odd prime p^2 is a term of A176970, because by Fermat's little theorem, for p prime, then 2^p = 2 (mod p). The super-Poulet numbers (A050217) form a subsequence with 341, 1387, 2047, 2701, ... (see example). LINKS EXAMPLE For 341 = 11 * 31 that is a super-Poulet:    2^11 (mod 31) = 2^31 (mod 11) = 2, hence 341 is a term; For 525 = 3 * 5^2 * 7 = 15 * 35 = 21 * 25:    2^15 (mod 35) = 2^35 (mod 15) = 8, but    2^21 (mod 25) = 2^25 (mod 21) = 2, hence, 525 is a term. MAPLE test := proc(n) local d, q; if n::odd then for d in NumberTheory:-Divisors(n) do q := iquo(n, d); if q > d and 2 &^ d mod q = 2 and 2 &^ q mod d = 2 then return true fi od fi; false end: select(test, [\$(1..10000)]); # Peter Luschny, Sep 17 2020 PROG (PARI) isok(n) = {if ((n % 2), fordiv(n, d, if ((d > n/d) && (lift(Mod(2, d)^(n/d)) == 2) && (lift(Mod(2, n/d)^d) == 2), return(1)); ); ); } \\ Michel Marcus, Sep 17 2020 CROSSREFS Subsequence of A176970. A050217 (super-Poulet) is a subsequence. Sequence in context: A020188 A025353 A025345 * A253038 A271873 A001567 Adjacent sequences:  A337712 A337713 A337714 * A337716 A337717 A337718 KEYWORD nonn AUTHOR Bernard Schott, Sep 16 2020 EXTENSIONS More terms from Amiram Eldar, Sep 16 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 13 00:24 EDT 2021. Contains 342934 sequences. (Running on oeis4.)