login
A337714
Euler totient function phi(N) divided by the multiplicative order of 3 modulo N, with N = N(n) = floor((3*n-1)/2), for n >= 1.
1
1, 1, 1, 1, 1, 2, 1, 2, 4, 1, 2, 1, 1, 2, 2, 2, 1, 4, 2, 1, 1, 2, 1, 2, 2, 1, 4, 5, 1, 2, 2, 2, 1, 1, 4, 1, 2, 4, 1, 2, 6, 1, 2, 4, 3, 2, 2, 2, 6, 2, 2, 2, 1, 8, 5, 2, 4, 1, 4, 1, 12, 2, 2, 2, 2, 1, 2, 1, 3, 8, 1, 2, 4, 2, 4, 1
OFFSET
1,6
COMMENTS
For the multiplicative order of 3 modulo N = N(n), with N(n) = floor((3*n-1)/2) = A001651(n), see A053446(n), for n >= 1.
For n >= 2 this sequence gives also the number of seeds s(N(n), i) needed to cover all numbers of the smallest positive restricted residue system (called RRS(N(n))) from the cycles obtained from s(N(n), i)*3^k (mod(N(n)), for k = 0..(P(N(n))-1), and certain s(N(n), i) chosen from RRS(N(n)). See A337936 for the choice of these seeds s(N, i). The cycles have period length P(N(n)) = A053446(n). For n = 1, N = 1, RRS(1) = [1] (not [0])
For the complete system of tripling sequences modulo N(n), for n >= 1, see A337936.
FORMULA
Bisection: a(2*k+1) = phi(3*k+1)/A053446(2*k+1), a(2*k+2) = phi(3*k+2)/A053446(2*k+2), for k >= 0, where phi = A000010.
EXAMPLE
The pairs [N(n),a(n)] begin, for n >= 1:
[1, 1], [2, 1], [4, 1], [5, 1], [7, 1], [8, 2], [10, 1], [11, 2], [13, 4], [14, 1], [16, 2], [17, 1], [19, 1], [20, 2], [22, 2], [23, 2], [25, 1], [26, 4], [28, 2], [29, 1], [31, 1], [32, 2], [34, 1], [35, 2], [37, 2], [38, 1], [40, 4], [41, 5], [43, 1], [44, 2], ...
The pairs [N(n)= floor((3*n-1)/2), P(N(n)) = A053446(n)] begin, for n >= 1:
[1, 1], [2, 1], [4, 2], [5, 4], [7, 6], [8, 2], [10, 4], [11, 5], [13, 3], [14, 6], [16, 4], [17, 16], [19, 18], [20, 4], [22, 5], [23, 11], [25, 20], [26, 3], [28, 6], [29, 28], [31, 30], [32, 8], [34, 16], [35, 12], [37, 18], [38, 18], [40, 4], [41, 8], [43, 42], [44, 10], ...
MATHEMATICA
a[n_] := EulerPhi[(f = Floor[(3*n - 1)/2])] / MultiplicativeOrder[3, f]; Array[a, 100] (* Amiram Eldar, Oct 22 2020 *)
PROG
(PARI) a(n) = my(N=(3*n-1)\2); eulerphi(N)/znorder(Mod(3, N)); \\ Michel Marcus, Oct 22 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Oct 22 2020
STATUS
approved