OFFSET
0,3
FORMULA
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp((BesselI(0,2*sqrt(2*x)) - 1) / 2).
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(Sum_{n>=1} 2^(n-1) * x^n / (n!)^2).
MATHEMATICA
a[0] = 1; a[n_] := a[n] = (1/n) Sum[Binomial[n, k]^2 k 2^(k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
nmax = 18; CoefficientList[Series[Exp[(BesselI[0, 2 Sqrt[2 x]] - 1)/2], {x, 0, nmax}], x] Range[0, nmax]!^2
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 02 2020
STATUS
approved