The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A337584 Triangle read by rows: T(n, k) is the number of integer multisets of size k (partitions of k) that match the multiplicity multiset of some partition of n (n >= 1, 1 <= k <= n). 2
 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 4, 3, 2, 1, 1, 1, 1, 3, 2, 4, 3, 2, 1, 1, 1, 2, 2, 4, 4, 4, 3, 2, 1, 1, 1, 1, 2, 3, 5, 3, 5, 3, 2, 1, 1, 1, 2, 3, 5, 5, 8, 5, 5, 3, 2, 1, 1, 1, 1, 2, 3, 5, 5, 8, 5, 5, 3, 2, 1, 1, 1, 2, 2, 4, 5, 7, 8, 8, 5, 5, 3 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,8 COMMENTS The relevant partitions of n have exactly k parts. Column k is k-periodic from n = k*(k+1)/2. LINKS Álvar Ibeas, First 71 rows, flattened Álvar Ibeas, First 30 rows FORMULA If k > (2*n+1)/3, T(n, k) = A088887(n - k). If n >= k*(k+1)/2, T(n, k) = Sum_{d | gcd(n, k)} A000837(k/d). T(n, k) = A000041(k) iff k|n and n >= k*(k+1)/2. EXAMPLE There is no partition of 5 with multiplicity multiset (3) or (1, 1, 1). Indeed, both (2 = A008284(5, 3)) partitions of 5 into 3 parts (namely, (3, 1, 1) and (2, 2, 1)) have multiplicities (2, 1). Therefore, T(5, 3) = 1. Triangle begins:   k:  1 2 3 4 5 6 7 8 9 10       -------------------- n=1:  1 n=2:  1 1 n=3:  1 1 1 n=4:  1 2 1 1 n=5:  1 1 1 1 1 n=6:  1 2 3 2 1 1 n=7:  1 1 2 2 2 1 1 n=8:  1 2 2 4 3 2 1 1 n=9:  1 1 3 2 4 3 2 1 1 n=10: 1 2 2 4 4 4 3 2 1 1 CROSSREFS Cf. A000041, A008284, A088887 (row sums). Sequence in context: A261794 A328929 A098744 * A273975 A025429 A325561 Adjacent sequences:  A337581 A337582 A337583 * A337585 A337586 A337587 KEYWORD nonn,tabl AUTHOR Álvar Ibeas, Sep 02 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 00:56 EST 2021. Contains 340249 sequences. (Running on oeis4.)