login
A337584
Triangle read by rows: T(n, k) is the number of integer multisets of size k (partitions of k) that match the multiplicity multiset of some partition of n (n >= 1, 1 <= k <= n).
3
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 4, 3, 2, 1, 1, 1, 1, 3, 2, 4, 3, 2, 1, 1, 1, 2, 2, 4, 4, 4, 3, 2, 1, 1, 1, 1, 2, 3, 5, 3, 5, 3, 2, 1, 1, 1, 2, 3, 5, 5, 8, 5, 5, 3, 2, 1, 1, 1, 1, 2, 3, 5, 5, 8, 5, 5, 3, 2, 1, 1, 1, 2, 2, 4, 5, 7, 8, 8, 5, 5, 3
OFFSET
1,8
COMMENTS
The relevant partitions of n have exactly k parts.
Column k is k-periodic from n = k*(k+1)/2.
LINKS
Alois P. Heinz, Rows n = 1..125 (first 71 rows from Álvar Ibeas)
Álvar Ibeas, First 30 rows
FORMULA
If k > (2*n+1)/3, T(n, k) = A088887(n - k).
If n >= k*(k+1)/2, T(n, k) = Sum_{d | gcd(n, k)} A000837(k/d).
T(n, k) = A000041(k) iff k|n and n >= k*(k+1)/2.
EXAMPLE
There is no partition of 5 with multiplicity multiset (3) or (1, 1, 1).
Indeed, both (2 = A008284(5, 3)) partitions of 5 into 3 parts (namely, (3, 1, 1) and (2, 2, 1)) have multiplicities (2, 1). Therefore, T(5, 3) = 1.
Triangle begins:
k: 1 2 3 4 5 6 7 8 9 10
--------------------
n=1: 1
n=2: 1 1
n=3: 1 1 1
n=4: 1 2 1 1
n=5: 1 1 1 1 1
n=6: 1 2 3 2 1 1
n=7: 1 1 2 2 2 1 1
n=8: 1 2 2 4 3 2 1 1
n=9: 1 1 3 2 4 3 2 1 1
n=10: 1 2 2 4 4 4 3 2 1 1
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1, `if`(n=0, {[]}, {[n]}),
{b(n, i-1)[], seq(map(x-> sort([x[], j]), b(n-i*j, i-1))[], j=1..n/i)})
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(add(x^add(i, i=t), t=b(n$2))):
seq(T(n), n=1..20); # Alois P. Heinz, Aug 17 2021
CROSSREFS
Cf. A000041, A008284, A088887 (row sums).
T(2n,n) gives A344680.
Sequence in context: A261794 A328929 A098744 * A273975 A025429 A325561
KEYWORD
nonn,tabl
AUTHOR
Álvar Ibeas, Sep 02 2020
STATUS
approved