The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A337575 O.g.f. A(x) satisfies: [x^n] exp( n*(n-1)^2 * x/A(x) ) = 0 for n > 0. 2
 1, 1, 13, 907, 153145, 46602295, 22140651001, 15084920403375, 13929456839705657, 16740856184792482831, 25396842996449548203625, 47478179622583931337645823, 107267415766722597731672066713, 288206818852524037700531966913487 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS It is remarkable that this sequence consists entirely of integers. LINKS FORMULA Given o.g.f. A(x), define B(x) = A(x*B(x)), then B(x) is the o.g.f. of A337576 and satisfies [x^n] exp( n^2*(n+1)*x ) / B(x)^(n+1) = 0 for n>0. EXAMPLE O.g.f.: A(x) = 1 + x + 13*x^2 + 907*x^3 + 153145*x^4 + 46602295*x^5 + 22140651001*x^6 + 15084920403375*x^7 + 13929456839705657*x^8 + ... ILLUSTRATION OF DEFINITION. The table of coefficients of x^k/k! in exp( n*(n-1)^2 * x/A(x) ) begins: n=0: [1, 0, 0, 0, 0, 0, 0, 0, ...]; n=1: [1, 0, 0, 0, 0, 0, 0, 0, ...]; n=2: [1, 2, 0, -160, -43520, -36711168, -67072065536, ...]; n=3: [1, 12, 120, 0, -293760, -234067968, -415963247616, ...]; n=4: [1, 36, 1224, 36288, 0, -792405504, -1355831322624, ...]; n=5: [1, 80, 6240, 467840, 31356160, 0, -3403785728000, ...]; n=6: [1, 150, 22200, 3229200, 456364800, 58514400000, 0, ...]; n=7: [1, 252, 63000, 15603840, 3817860480, 913835768832, 200316485182464, 0, ...]; ... in which the main diagonal is all zeros after the initial term, illustrating that [x^n] exp( n*(n-1)^2*x/A(x) ) = 0 for n>0. RELATED SERIES. Define B(x) = A(x*B(x)), which begins B(x) = 1 + x + 14*x^2 + 947*x^3 + 157190*x^4 + 47437866*x^5 + 22437363324*x^6 + 15246207565643*x^7 + ... + A337576(n)*x^n + ... then the table of coefficients of x^k/k! in exp( n^2*(n+1)*x ) / B(x)^(n+1) begins: n=0: [1, -1, -26, -5520, -3723384, -5652041280, -16083171669600, ...]; n=1: [1, 0, -54, -11200, -7486872, -11338403328, -32230618603040, ...]; n=2: [1, 9, 0, -18258, -11861352, -17522277048, -49272492906432, ...]; n=3: [1, 32, 916, 0, -17438424, -25288921344, -69043257103968, ...]; n=4: [1, 75, 5490, 363500, 0, -35101453320, -94993441197200, ...]; n=5: [1, 144, 20574, 2882400, 368064576, 0, -127110906431280, ...]; n=6: [1, 245, 59836, 14528010, 3470388768, 759773089152, 0, ...]; n=7: [1, 384, 147240, 56329472, 21453513648, 8058471570432, 2785824326725888, 0, ...]; ... in which the main diagonal is all zeros after the initial term, illustrating that [x^n] exp( n^2*(n+1)*x ) / B(x)^(n+1) = 0 for n>0. Also note that B(x) = (1/x)*Series_Reversion( x/A(x) ) and A(x) = B(x/A(x)). PROG (PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(m*(m-1)^2*x/Ser(A) ))[m+1]/(m*(m-1)^2) ); A[n+1]} for(n=0, 20, print1(a(n), ", ")) CROSSREFS Cf. A337576, A337457, A337577. Sequence in context: A196695 A196728 A197068 * A274544 A267915 A096084 Adjacent sequences:  A337572 A337573 A337574 * A337576 A337577 A337578 KEYWORD nonn AUTHOR Paul D. Hanna, Sep 02 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 28 06:00 EST 2021. Contains 340490 sequences. (Running on oeis4.)