login
A337552
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * (3*k-2) * a(n-k).
2
1, 1, 6, 37, 330, 3613, 47652, 732625, 12875118, 254540413, 5591435136, 135108218353, 3561467337546, 101704047315037, 3127751183515020, 103059820083026449, 3622223857996975110, 135266462416766669917, 5348457650664454581240, 223227700948792985989777
OFFSET
0,3
FORMULA
E.g.f.: 1 / (exp(x) * (2 - 3*x) - 1).
a(n) ~ n! * c / ((1-c) * (2/3 - c)^(n+1)), where c = -LambertW(-exp(-2/3)/3). - Vaclav Kotesovec, Aug 31 2020
MATHEMATICA
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] (3 k - 2) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]
nmax = 19; CoefficientList[Series[1/(Exp[x] (2 - 3 x) - 1), {x, 0, nmax}], x] Range[0, nmax]!
PROG
(PARI) seq(n)={Vec(serlaplace(1 / (exp(x + O(x*x^n)) * (2 - 3*x) - 1)))} \\ Andrew Howroyd, Aug 31 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 31 2020
STATUS
approved