login
Triangle read by rows where T(n,k) is the number of length-n sequences covering an initial interval of positive integers with k maximal anti-runs.
3

%I #13 Dec 31 2020 19:24:13

%S 1,0,1,0,2,1,0,8,4,1,0,44,24,6,1,0,308,176,48,8,1,0,2612,1540,440,80,

%T 10,1,0,25988,15672,4620,880,120,12,1,0,296564,181916,54852,10780,

%U 1540,168,14,1,0,3816548,2372512,727664,146272,21560,2464,224,16,1

%N Triangle read by rows where T(n,k) is the number of length-n sequences covering an initial interval of positive integers with k maximal anti-runs.

%C An anti-run is a sequence with no adjacent equal parts. The number of maximal anti-runs is one more than the number of adjacent equal parts.

%H Andrew Howroyd, <a href="/A337506/b337506.txt">Table of n, a(n) for n = 0..1325</a>

%F T(n,k) = A005649(n-k) * binomial(n-1,k-1) for k > 0. - _Andrew Howroyd_, Dec 31 2020

%e Triangle begins:

%e 1

%e 0 1

%e 0 2 1

%e 0 8 4 1

%e 0 44 24 6 1

%e 0 308 176 48 8 1

%e 0 2612 1540 440 80 10 1

%e 0 25988 15672 4620 880 120 12 1

%e 0 296564 181916 54852 10780 1540 168 14 1

%e Row n = 3 counts the following sequences (empty column indicated by dot):

%e . (1,2,1) (1,1,2) (1,1,1)

%e (1,2,3) (1,2,2)

%e (1,3,2) (2,1,1)

%e (2,1,2) (2,2,1)

%e (2,1,3)

%e (2,3,1)

%e (3,1,2)

%e (3,2,1)

%t allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];

%t Table[Length[Select[Join@@Permutations/@allnorm[n],Length[Split[#,UnsameQ]]==k&]],{n,0,5},{k,0,n}]

%o (PARI) \\ here b(n) is A005649.

%o b(n) = {sum(k=0, n, stirling(n,k,2)*(k + 1)!)}

%o T(n,k)=if(n==0, k==0, b(n-k)*binomial(n-1,k-1)) \\ _Andrew Howroyd_, Dec 31 2020

%Y A000670 gives row sums.

%Y A005649 gives column k = 1.

%Y A337507 gives column k = 2.

%Y A337505 gives the diagonal n = 2*k.

%Y A106356 is the version for compositions.

%Y A238130/A238279/A333755 is the version for runs in compositions.

%Y A335461 has the reversed rows (except zeros).

%Y A003242 counts anti-run compositions.

%Y A124762 counts adjacent equal terms in standard compositions.

%Y A124767 counts maximal runs in standard compositions.

%Y A333381 counts maximal anti-runs in standard compositions.

%Y A333382 counts adjacent unequal terms in standard compositions.

%Y A333489 ranks anti-run compositions.

%Y A333769 gives maximal run-lengths in standard compositions.

%Y A337565 gives maximal anti-run lengths in standard compositions.

%Y Cf. A019472, A052841, A060223, A106351, A269134, A325535, A337564.

%K nonn,tabl

%O 0,5

%A _Gus Wiseman_, Sep 06 2020

%E Terms a(45) and beyond from _Andrew Howroyd_, Dec 31 2020