login
A337414
Array read by descending antidiagonals: T(n,k) is the number of achiral colorings of the edges of a regular n-dimensional orthoplex (cross polytope) using k or fewer colors.
9
1, 2, 1, 3, 6, 1, 4, 18, 70, 1, 5, 40, 1407, 8200, 1, 6, 75, 12480, 9080559, 12804908, 1, 7, 126, 69050, 1503323520, 4906480368591, 304899216832, 1, 8, 196, 281946, 81461669375, 48226825456539776, 187380251418565888983, 103685962258536432, 1
OFFSET
1,2
COMMENTS
An achiral arrangement is identical to its reflection. For n=1, the figure is a line segment with one edge. For n=2, the figure is a square with 4 edges. For n=3, the figure is an octahedron with 12 edges. The number of edges is 2n*(n-1) for n>1.
Also the number of achiral colorings of the regular (n-2)-dimensional orthotopes (hypercubes) in a regular n-dimensional orthotope.
FORMULA
The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n and then considers separate conjugacy classes for axis reversals. It uses the formulas in Balasubramanian's paper. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).
T(n,k) = 2*A337412(n,k) - A337411(n,k) = A337411(n,k) - 2*A337413(n,k) = A337412(n,k) - A337413(n,k).
EXAMPLE
Table begins with T(1,1):
1 2 3 4 5 6 7 8 9 10 ...
1 6 18 40 75 126 196 288 405 550 ...
1 70 1407 12480 69050 281946 931490 2632512 6598935 15041950 ...
For T(2,2)=6, the arrangements are AAAA, AAAB, AABB, ABAB, ABBB, and BBBB.
MATHEMATICA
m=1; (* dimension of color element, here an edge *)
Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1 + 2 x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, m+1]];
FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}]; DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]);
CCPol[r_List] := (r1 = r; r2 = cs - r1; If[EvenQ[Sum[If[EvenQ[j3], r1[[j3]], r2[[j3]]], {j3, n}]], 0, (per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]], 1, j2], 2j2], {j2, n}]; Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[])]);
PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0, cs]]]);
pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*)
row[m]=b;
row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^(n-1))]
array[n_, k_] := row[n] /. b -> k
Table[array[n, d+m-n], {d, 8}, {n, m, d+m-1}] // Flatten
CROSSREFS
Cf. A337411 (oriented), A337412 (unoriented), A337413 (chiral).
Rows 1-4 are A000027, A002411, A331351, A331357.
Cf. A327086 (simplex edges), A337410 (orthotope edges), A325007 (orthoplex vertices).
Sequence in context: A325007 A103371 A325015 * A337410 A337389 A120257
KEYWORD
nonn,tabl
AUTHOR
Robert A. Russell, Aug 26 2020
STATUS
approved