OFFSET
0,7
COMMENTS
The first two rows are 1, then 1,1,1. To get row n, copy row n-1, and insert c+d between every pair of adjacent terms c,d, and finally insert a 1 at the beginning and end of the row.
The maximum value in row n is A000045(n+1). - Alois P. Heinz, Sep 09 2020
REFERENCES
Stanley, Richard P. "Some Linear Recurrences Motivated by Stern’s Diatomic Array." The American Mathematical Monthly 127.2 (2020): 99-111.
LINKS
Alois P. Heinz, Rows n = 0..14, flattened
Richard P. Stanley, Some Linear Recurrences Motivated by Stern's Diatomic Array, arXiv:1901.04647 [math.CO], 2019.
FORMULA
T(n,n) = A002487(n+1). - Alois P. Heinz, Sep 09 2020
EXAMPLE
Triangle begins:
1;
1, 1, 1;
1, 1, 2, 1, 2, 1, 1;
1, 1, 2, 1, 3, 2, 3, 1, 3, 2, 3, 1, 2, 1, 1;
1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 4, 3, 5, 2, 5, 3, 4, 1, 3, 2, 3, 1, 2, 1, 1;
...
MAPLE
T:= proc(n) option remember; `if`(n=0, 1, (L-> [1, L[1], seq(
[L[i-1]+L[i], L[i]][], i=2..nops(L)), 1][])([T(n-1)]))
end:
seq(T(n), n=0..6); # Alois P. Heinz, Sep 09 2020
MATHEMATICA
Nest[Append[#, Flatten@ Join[{1}, If[Length@ # > 1, Map[{#1, #1 + #2} & @@ # &, Partition[#[[-1]], 2, 1] ], {}], {#[[-1, -1]]}, {1}]] &, {{1}}, 5] // Flatten (* Michael De Vlieger, Sep 09 2020 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Sep 09 2020
STATUS
approved