OFFSET
0,1
COMMENTS
LINKS
N. J. A. Sloane, Notes on the Conant Gasket, the Conant Lattice, and Associated Sequences, Preliminary version, Aug 23 2020
N. J. A. Sloane, The Even Conant Lattice (The grid points (m,n) are labeled with pairs v(m,n), h(m,n).)
EXAMPLE
The array begins as follows. The rows are shown in the appropriate order for looking at the first quadrant (that is, row 0 is at the bottom, then row 1, and so on):
r
row 7 = 3, 1, 1, 2, 3, 1, 2, 0, 3, 2, 0, 0, 3, 2, 3, 2, ...
row 6 = 3, 1, 1, 3, 2, 0, 3, 1, 2, 2, 0, 0, 3, 3, 2, 2, ...
row 5 = 3, 2, 0, 0, 3, 1, 2, 3, 2, 3, 1, 1, 2, 0, 3, 2, ...
row 4 = 3, 3, 1, 1, 2, 0, 2, 2, 3, 3, 1, 1, 2, 0, 2, 2, ...
row 3 = 3, 1, 2, 3, 2, 0, 3, 2, 3, 1, 2, 3, 2, 0, 3, 2, ...
row 2 = 3, 1, 2, 2, 3, 1, 2, 2, 3, 1, 2, 2, 3, 1, 2, 2, ...
row 1 = 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, ...
row 0 = 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
The initial antidiagonals (starting in the bottom left corner) are:
[3]
[3, 3]
[3, 2, 3]
[3, 1, 3, 3]
[3, 1, 2, 2, 3]
[3, 3, 2, 2, 3, 3]
[3, 2, 1, 3, 3, 2, 3]
[3, 1, 0, 1, 2, 1, 3, 3]
[3, 1, 1, 0, 2, 0, 2, 2, 3]
[3, 3, 1, 3, 3, 0, 3, 2, 3, 3]
[3, 2, 3, 2, 2, 1, 2, 2, 3, 2, 3]
[3, 1, 3, 1, 3, 0, 2, 2, 3, 1, 3, 3]
[3, 1, 2, 1, 1, 1, 3, 3, 3, 1, 2, 2, 3]
...
MAPLE
For Maple code see my "Notes".
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Aug 22 2020
STATUS
approved