login
Decimal expansion of Product_{k>=1} (1+1/k)^(1/k).
0

%I #114 Jul 25 2024 14:02:03

%S 3,5,1,7,4,8,7,2,5,5,9,0,2,3,6,9,6,4,9,3,9,9,7,9,3,6,9,9,3,2,3,8,6,4,

%T 1,7,0,6,8,5,6,2,0,7,8,6,7,6,4,9,3,8,1,9,7,7,5,6,8,0,0,7,9,5,4,4,1,0,

%U 3,9,0,0,4,9,8,0,7,0,6,3,8,2,2,8,6,7,3

%N Decimal expansion of Product_{k>=1} (1+1/k)^(1/k).

%H Mathoverflow, <a href="https://mathoverflow.net/questions/22088/infinite-product-experimental-mathematics-question">Infinite product experimental mathematics question</a>, Apr 21 2010.

%H Péter Pál Pach and Richárd Palincza, <a href="https://arxiv.org/abs/2009.05305">The counting version of a problem of Erdős</a>, arXiv:2009.05305 [math.CO], 2020. Mentions this constant.

%F Equals exp(A131688). - _Amiram Eldar_, Sep 14 2020

%e 3.517487255902369649399793699323864170685620786764938...

%t First[RealDigits[Exp[NSum[Log[s]/(s(s-1)), {s, 2, Infinity}, NSumTerms -> 1000, Method -> {"NIntegrate", "MaxRecursion" -> 100}, WorkingPrecision -> 100]]]] (* _Stefano Spezia_, Jun 07 2024 *)

%Y Cf. A131688.

%K nonn,cons

%O 1,1

%A _Michel Marcus_, Sep 14 2020

%E More terms from _Amiram Eldar_, Sep 14 2020