%I #33 Sep 13 2020 14:29:02
%S 2331309585756753201600,11841091337275200,437868837806400,
%T 467584848090400,38732026132800,20350725595200,87358471200,
%U 7820482269600,18526958049600,222987885120,8490081600,19445025600,9958865716800,73513400,2244077793757800,3749442460305984,3749442460305984
%N a(n) = N(chi_n) for the irreducible characters chi_n of the Monster simple group (cf. comments).
%C The terms N_chi are defined at the top of page 3 of the Harada-Lang article. This sequence lists the 194 terms in the order of Table 1 at the end of the article, but without the prime decompositions given there.
%H Georg Fischer, <a href="/A337094/b337094.txt">Table of n, a(n) for n = 1..194</a>
%H Koichiro Harada and Mong Lung Lang, <a href="https://arxiv.org/abs/q-alg/9412013">The McKay-Thompson series associated with the irreducible characters of the Monster</a>, Preprint arXiv:q-alg/9412013, Dec 28 1994, 18 pp.
%e N(chi_1) = 2331309585756753201600 = 2^6*3^3*5^2*7*11*13*17*19*23*29*31*41*47*59*71.
%e N(chi_194) = 1404480 = 2^6*3*5*7*11*19.
%K nonn,fini,full
%O 1,1
%A _Georg Fischer_, Aug 23 2020