login
a(n) = exp(-1/2) * Sum_{k>=0} (2*k + 3)^n / (2^k * k!).
2

%I #5 Aug 11 2020 19:47:56

%S 1,4,18,92,532,3440,24552,191280,1612304,14597952,141123872,

%T 1449324992,15743376704,180203389696,2166381979264,27274611880704,

%U 358690234163456,4916123783848960,70076765972288000,1036967662211324928,15902394743591408640

%N a(n) = exp(-1/2) * Sum_{k>=0} (2*k + 3)^n / (2^k * k!).

%F E.g.f.: exp(3*x + (exp(2*x) - 1) / 2).

%F a(0) = 1; a(n) = 4 * a(n-1) + Sum_{k=2..n} binomial(n-1,k-1) * 2^(k-1) * a(n-k).

%F a(n) = Sum_{k=0..n} binomial(n,k) * A004211(k+1).

%F a(n) = Sum_{k=0..n} binomial(n,k) * 3^(n-k) * A004211(k).

%t nmax = 20; CoefficientList[Series[Exp[3 x + (Exp[2 x] - 1)/2], {x, 0, nmax}], x] Range[0, nmax]!

%t a[0] = 1; a[n_] := a[n] = 4 a[n - 1] + Sum[Binomial[n - 1, k - 1] 2^(k - 1) a[n - k], {k, 2, n}]; Table[a[n], {n, 0, 20}]

%Y Cf. A004211, A005494, A007405, A337011.

%K nonn

%O 0,2

%A _Ilya Gutkovskiy_, Aug 11 2020