login
A336927
Lexicographically earliest infinite sequence such that a(i) = a(j) => A335880(sigma(i)) = A335880(sigma(j)), for all i, j >= 1.
3
1, 2, 1, 3, 2, 2, 1, 4, 5, 5, 2, 3, 3, 2, 2, 6, 5, 7, 8, 9, 1, 5, 2, 4, 6, 9, 8, 3, 4, 5, 1, 10, 2, 7, 2, 10, 7, 4, 3, 11, 9, 2, 5, 9, 7, 5, 2, 6, 12, 13, 5, 13, 7, 4, 5, 4, 8, 11, 4, 9, 6, 2, 5, 14, 9, 5, 15, 10, 2, 5, 5, 16, 11, 12, 6, 7, 2, 9, 8, 13, 12, 10, 9, 3, 7, 7, 4, 11, 11, 12, 3, 9, 1, 5, 4, 10, 13, 17, 7, 18, 19, 7, 5, 12, 2
OFFSET
1,2
COMMENTS
Restricted growth sequence transform of the function f(n) = A335880(A000203(n)), or equally, of the ordered pair [A336928(n), A336929(n)].
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A329697(n) = { my(f=factor(n)); sum(k=1, #f~, if(2==f[k, 1], 0, f[k, 2]*(1+A329697(f[k, 1]-1)))); };
A331410(n) = { my(f=factor(n)); sum(k=1, #f~, if(2==f[k, 1], 0, f[k, 2]*(1+A331410(f[k, 1]+1)))); };
Aux335880(n) = [A329697(n), A331410(n)];
v336927 = rgs_transform(vector(up_to, n, Aux335880(sigma(n))));
A336927(n) = v336927[n];
CROSSREFS
Cf. also A336926.
Sequence in context: A227277 A071481 A324293 * A318832 A162348 A262324
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 11 2020
STATUS
approved