login
A336896
Sum of the leftmost parts in all compositions of n into distinct parts.
1
0, 1, 2, 6, 8, 15, 30, 42, 64, 99, 190, 242, 384, 533, 798, 1380, 1824, 2635, 3762, 5320, 7280, 12327, 15554, 22632, 30720, 43425, 57538, 80730, 122920, 159239, 220830, 299150, 406656, 542883, 733278, 962710, 1443600, 1820437, 2496638, 3280992, 4451120
OFFSET
0,3
COMMENTS
Also sum of the rightmost parts in all compositions of n into distinct parts.
LINKS
FORMULA
a(n) = n * Sum_{k=1..floor((sqrt(8*n+1)-1)/2)} (k-1)! * A008289(n,k).
a(n) = n * A032153(n).
EXAMPLE
a(6) = 30 = 1 + 1 + 2 + 2 + 3 + 3 + 2 + 4 + 1 + 5 + 6: (1)23, (1)32, (2)13, (2)31, (3)12, (3)21, (2)4, (4)2, (1)5, (5)1, (6).
MAPLE
b:= proc(n, i, p) option remember; `if`(i*(i+1)/2<n, 0,
`if`(n=0, p!, b(n, i-1, p)+b(n-i, min(n-i, i-1), p+1)))
end:
a:= n-> `if`(n=0, 0, n*b(n$2, -1)):
seq(a(n), n=0..50);
MATHEMATICA
b[n_, i_, p_] := b[n, i, p] = If[i*(i + 1)/2 < n, 0,
If[n == 0, p!, b[n, i - 1, p] + b[n - i, Min[n - i, i - 1], p + 1]]];
a[n_] := If[n == 0, 0, n*b[n, n, -1]];
Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 13 2022, after Alois P. Heinz *)
CROSSREFS
Cf. A000225 (the same for all compositions), A008289, A032020, A032153.
Sequence in context: A049818 A066189 A278834 * A306906 A174658 A326300
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 07 2020
STATUS
approved