|
|
A336810
|
|
Continued fraction expansion of Sum_{k>=0} 1/(k!)!.
|
|
2
|
|
|
2, 1, 1, 179, 2, 1196852626800230399, 1, 1, 179, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
a(11), a(21), and a(41) have 152, 1349, and 12981 digits, respectively.
|
|
LINKS
|
Georg Fischer, Table of n, a(n) for n = 0..20
Georg Fischer, Table of n, a(n) for n = 0..139
Alfred J. van der Poorten and Jeffrey Shallit, Folded continued fractions, Journal of Number Theory, Vol. 40, Issue 2, 1992, pp. 237-250 (cf. prop. 2).
|
|
FORMULA
|
The peak terms have the form ((k+1)!)! / ((k!)!)^2 - 1. - Georg Fischer, Oct 19 2022 [pers. comm. with J. Shallit]
|
|
MATHEMATICA
|
ContinuedFraction[Sum[1/(k!)!, {k, 0, 6}], 21] (* Amiram Eldar, Nov 22 2020 *)
|
|
PROG
|
(PARI) contfrac(suminf(k=0, 1/(k!)!))
|
|
CROSSREFS
|
Cf. A336686 (decimal expansion).
Sequence in context: A159767 A169658 A330199 * A178473 A164810 A322392
Adjacent sequences: A336807 A336808 A336809 * A336811 A336812 A336813
|
|
KEYWORD
|
nonn,cofr
|
|
AUTHOR
|
Daniel Hoyt, Nov 20 2020
|
|
STATUS
|
approved
|
|
|
|