login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A336808 a(n) = (n!)^2 * Sum_{k=0..n} 5^(n-k) / (k!)^2. 4
1, 6, 121, 5446, 435681, 54460126, 9802822681, 2401691556846, 768541298190721, 311259225767242006, 155629612883621003001, 94155915794590706815606, 67792259372105308907236321, 57284459169428986026614691246, 56138769986040406306082397421081, 63156116234295457094342697098716126 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..15.

FORMULA

Sum_{n>=0} a(n) * x^n / (n!)^2 = BesselI(0,2*sqrt(x)) / (1 - 5*x).

a(0) = 1; a(n) = 5 * n^2 * a(n-1) + 1.

MATHEMATICA

Table[n!^2 Sum[5^(n - k)/k!^2, {k, 0, n}], {n, 0, 15}]

nmax = 15; CoefficientList[Series[BesselI[0, 2 Sqrt[x]]/(1 - 5 x), {x, 0, nmax}], x] Range[0, nmax]!^2

CROSSREFS

Cf. A006040, A056546, A336804, A336805, A336807.

Sequence in context: A053710 A336389 A126244 * A296801 A249168 A138572

Adjacent sequences: A336805 A336806 A336807 * A336809 A336810 A336811

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Jan 27 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 5 22:19 EST 2023. Contains 360087 sequences. (Running on oeis4.)