The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A336804 a(n) = (n!)^2 * Sum_{k=0..n} 2^(n-k) / (k!)^2. 4
 1, 3, 25, 451, 14433, 721651, 51958873, 5091969555, 651772103041, 105587080692643, 21117416138528601, 5110414705523921443, 1471799435190889375585, 497468209094520608947731, 195007537965052078707510553, 87753392084273435418379748851, 44929736747147998934210431411713 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS FORMULA Sum_{n>=0} a(n) * x^n / (n!)^2 = BesselI(0,2*sqrt(x)) / (1 - 2*x). a(0) = 1; a(n) = 2 * n^2 * a(n-1) + 1. MATHEMATICA Table[n!^2 Sum[2^(n - k)/k!^2, {k, 0, n}], {n, 0, 16}] nmax = 16; CoefficientList[Series[BesselI[0, 2 Sqrt[x]]/(1 - 2 x), {x, 0, nmax}], x] Range[0, nmax]!^2 CROSSREFS Cf. A006040, A010844, A228513, A336805, A336807, A336808. Sequence in context: A009843 A182962 A223076 * A272482 A356404 A136173 Adjacent sequences: A336801 A336802 A336803 * A336805 A336806 A336807 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Jan 27 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 27 21:49 EST 2023. Contains 359849 sequences. (Running on oeis4.)