|
|
A336804
|
|
a(n) = (n!)^2 * Sum_{k=0..n} 2^(n-k) / (k!)^2.
|
|
4
|
|
|
1, 3, 25, 451, 14433, 721651, 51958873, 5091969555, 651772103041, 105587080692643, 21117416138528601, 5110414705523921443, 1471799435190889375585, 497468209094520608947731, 195007537965052078707510553, 87753392084273435418379748851, 44929736747147998934210431411713
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Table of n, a(n) for n=0..16.
|
|
FORMULA
|
Sum_{n>=0} a(n) * x^n / (n!)^2 = BesselI(0,2*sqrt(x)) / (1 - 2*x).
a(0) = 1; a(n) = 2 * n^2 * a(n-1) + 1.
|
|
MATHEMATICA
|
Table[n!^2 Sum[2^(n - k)/k!^2, {k, 0, n}], {n, 0, 16}]
nmax = 16; CoefficientList[Series[BesselI[0, 2 Sqrt[x]]/(1 - 2 x), {x, 0, nmax}], x] Range[0, nmax]!^2
|
|
CROSSREFS
|
Cf. A006040, A010844, A228513, A336805, A336807, A336808.
Sequence in context: A009843 A182962 A223076 * A272482 A356404 A136173
Adjacent sequences: A336801 A336802 A336803 * A336805 A336806 A336807
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Ilya Gutkovskiy, Jan 27 2021
|
|
STATUS
|
approved
|
|
|
|