login
A336707
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(0,k) = 1 and T(n,k) = (1/n) * Sum_{j=1..n} 2^(n-j) * binomial(n,j) * binomial(n+(k-1)*j,j-1) for n > 0.
5
1, 1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 4, 11, 20, 1, 1, 5, 19, 45, 72, 1, 1, 6, 30, 100, 197, 272, 1, 1, 7, 44, 201, 562, 903, 1064, 1, 1, 8, 61, 364, 1445, 3304, 4279, 4272, 1, 1, 9, 81, 605, 3249, 10900, 20071, 20793, 17504, 1, 1, 10, 104, 940, 6502, 30526, 85128, 124996, 103049, 72896
OFFSET
0,6
LINKS
FORMULA
G.f. A_k(x) of column k satisfies A_k(x) = 1 + x * A_k(x)^k / (1 - 2 * x * A_k(x)).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
2, 3, 4, 5, 6, 7, 8, ...
6, 11, 19, 30, 44, 61, 81, ...
20, 45, 100, 201, 364, 605, 940, ...
72, 197, 562, 1445, 3249, 6502, 11857, ...
272, 903, 3304, 10900, 30526, 73723, 158034, ...
MATHEMATICA
T[0, k_] := 1; T[n_, k_] := Sum[2^(n - j) * Binomial[n, j] * Binomial[n + (k - 1)*j, j - 1], {j, 1, n}] / n; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 01 2020 *)
PROG
(PARI) {T(n, k) = if(n==0, 1, sum(j=1, n, 2^(n-j)*binomial(n, j)*binomial(n+(k-1)*j, j-1))/n)}
(PARI) {T(n, k) = local(A=1+x*O(x^n)); for(i=0, n, A=1+x*A^k/(1-2*x*A)); polcoef(A, n)}
CROSSREFS
Columns k=0-3 give: A071356(n-1), A001003, A007564, A118346.
Main diagonal gives A336712.
Sequence in context: A075248 A359140 A365623 * A128325 A307883 A111528
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Aug 01 2020
STATUS
approved