OFFSET
0,2
COMMENTS
The indices of triangular numbers that are one-eighth of other triangular numbers [m of T(m) such that T(m)=T(k)/8]. The T(m)'s are in A336624, the T(k)'s are in A336626 and the k's are in A336625.
Also, nonnegative m such that 32*m^2 + 32*m + 1 is a square.
Can be defined for negative n by setting a(n) = a(-1-n) for all n in Z.
LINKS
Vladimir Pletser, Table of n, a(n) for n = 0..1000
Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021.
Vladimir Pletser, Closed Form Equations for Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2102.12392 [math.GM], 2021.
Vladimir Pletser, Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations, arXiv:2102.13494 [math.NT], 2021.
Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2022.
Index entries for linear recurrences with constant coefficients, signature (1,34,-34,-1,1).
FORMULA
a(n) = 34 a(n-2) - a(n-4) + 16 for n>=2, with a(1)=5, a(0)=0, a(-1)=0, a(-2)=5.
a(n) = a(n-1) + 34 a(n-2) - 34 a(n-3) - a(n-4)+ a(n-5) for n>=3 with a(2)=11, a(1)=5, a(0)=0, a(-1)=0, a(-2)=5.
a(n) = (C+((-1)^n)*D)*A^n + (E+((-1)^n)*F)*B^n -1/2 with A = (sqrt(2) + 1)^2 ; B = (sqrt(2) - 1)^2 ; C = 3*(2 + sqrt(2))/16 ; D = -(1 + sqrt(2))/8 ; E = 3*(2 - sqrt(2))/16 ; F = (sqrt(2) - 1)/8 and n>=0.
a(n) = (-1 + sqrt(8*b(n) + 1))/2 where b(n) = A336624(n).
G.f.: x*(5 + 6*x + 5*x^2) / ((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)). - Colin Barker, Aug 08 2020
a(n) = ((3*sqrt(2) - 2*(-1)^n) * (1 + sqrt(2))^(2*n + 1) + (3*sqrt(2) + 2*(-1)^n) * (sqrt(2) - 1)^(2*n + 1) - 8)/16. - Vaclav Kotesovec, Sep 08 2020
Comment from _Vladimir Pletser, Feb 21 2021: (Start)
a(n) = ((4 + sqrt(2))(1 + sqrt(2))^(2n) + (4 - sqrt(2))(1 - sqrt(2))^(2n))/16 - 1/2 for even n.
a(n) = ((8 + 5 sqrt(2))(1 + sqrt(2))^(2n) + (8 - 5 sqrt(2))(1 - sqrt(2))^(2n))/16 - 1/2 for odd n. (End)
EXAMPLE
a(2) = 34 a(0) - a(-2)+16=0 -5 +16 = 11 ; a(3) = 34 a(1) - a(-1)+16 = 34*5 -0 +16 = 186, etc.
MAPLE
f := gfun:-rectoproc({a(n) = 34*a(n - 2) - a(n - 4) + 16, a(1) = 5, a(0) = 0, a(-1) = 0, a(-2) = 5}, a(n), remember); map(f, [$ (0 .. 50)]); #
MATHEMATICA
LinearRecurrence[{1, 34, -34, -1, 1}, {0, 5, 11, 186, 390}, 24] (* Amiram Eldar, Aug 08 2020 *)
FullSimplify[Table[((3*Sqrt[2] - 2*(-1)^n)*(1 + Sqrt[2])^(2*n + 1) + (3*Sqrt[2] + 2*(-1)^n)*(Sqrt[2] - 1)^(2*n + 1) - 8)/16, {n, 0, 20}]] (* Vaclav Kotesovec, Sep 08 2020 *)
PROG
(PARI) concat(0, Vec(x*(5 + 6*x + 5*x^2) / ((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)) + O(x^22))) \\ Colin Barker, Aug 08 2020
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladimir Pletser, Aug 07 2020
STATUS
approved