login
A336614
Number of n X n (0,1)-matrices A over the reals such that A^2 is the transpose of A.
3
1, 2, 4, 10, 32, 112, 424, 1808, 8320, 40384, 210944, 1170688, 6783616, 41411840, 265451008, 1765520128, 12227526656, 88163295232, 656548065280, 5054719287296, 40261285543936, 330010835894272, 2783003772452864, 24166721466204160, 215318925894909952, 1966855934183800832
OFFSET
0,2
COMMENTS
From Peter Luschny, Jun 04 2021: (Start)
a(n) = n! * [x^n] exp(x*(x^2 + 6)/3).
a(n) = 2*a(n - 1) + (n^2 - 3*n + 2)*a(n - 3) for n >= 3.
a(n) = Sum_{k=0..n/3} (2^(n-3*k)*n!)/(3^k*k!*(n-3*k)!).
a(n) = 2^n*hypergeom([-n/3, (1-n)/3, (2-n)/3], [], -9/8).
[The above formulas, first stated as conjectures, were proved by mjqxxxx at Mathematics Stack Exchange, see link.] (End)
FORMULA
a(n) = A336174(n) + A000079(n).
EXAMPLE
a(3) = A336174(3) + A000079(3) = 2 + 8 = 10.
MAPLE
a := n -> add((2^(n - 3*k)*n!)/(3^k*k!*(n - 3*k)!), k=0..n/3):
seq(a(n), n=0..25); # Peter Luschny, Jun 05 2021
PROG
(PARI) m(n, t) = matrix(n, n, i, j, (t>>(i*n+j-n-1))%2)
a(n) = sum(t = 0, 2^n^2-1, m(n, t)^2 == m(n, t)~)
for(n = 0, 9, print1(a(n), ", "))
(Python)
from itertools import product
from sympy import Matrix
def A336614(n):
c = 0
for d in product((0, 1), repeat=n*n):
M = Matrix(d).reshape(n, n)
if M*M == M.T:
c += 1
return c # Chai Wah Wu, Sep 29 2020
CROSSREFS
Row sums of A344912.
Sequence in context: A363138 A367113 A365516 * A071954 A352279 A120017
KEYWORD
nonn
AUTHOR
Torlach Rush, Jul 27 2020
EXTENSIONS
More terms from Peter Luschny, Jun 05 2021
STATUS
approved