login
A336598
Triangle read by rows: T(n,k) is the number of linear chord diagrams on 2n vertices with one marked chord such that exactly k of the remaining n-1 chords cross the marked chord.
5
1, 4, 2, 21, 18, 6, 144, 156, 96, 24, 1245, 1500, 1260, 600, 120, 13140, 16470, 16560, 11160, 4320, 720, 164745, 207270, 231210, 194040, 108360, 35280, 5040, 2399040, 2976120, 3507840, 3402000, 2419200, 1149120, 322560, 40320
OFFSET
1,2
LINKS
Donovan Young, Table of n, a(n) for n = 1..9870 (Rows 1..140).
Donovan Young, A critical quartet for queuing couples, arXiv:2007.13868 [math.CO], 2020.
FORMULA
T(n,k) = n*T(n-1,k) + n*T(n-1,k-1), with T(n,0) = A233481(n) for n > 0.
E.g.f.: x/sqrt(1 - 2*x)/(1 - x*(1 + y)).
EXAMPLE
Triangle begins:
1;
4, 2;
21, 18, 6;
144, 156, 96, 24;
1245, 1500, 1260, 600, 120;
...
For n = 2 and k = 1, let the four vertices be {1,2,3,4}. The marked chord can be either (1,3), and so crossed once by (2,4), or (2,4), and so crossed once by (1,3). Hence T(2,1) = 2.
MATHEMATICA
CoefficientList[Normal[Series[x/Sqrt[1-2*x]/(1-x(1+y)), {x, 0, 10}]]/.{x^n_.->x^n*n!}, {x, y}]
PROG
(PARI)
T(n)={[Vecrev(p) | p<-Vec(serlaplace(x/sqrt(1 - 2*x + O(x^n))/(1 - x*(1 + y))))]}
{ my(A=T(8)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jul 29 2020
CROSSREFS
Row sums are n*A001147(n) for n > 0.
First column is A233481(n) for n > 0.
Leading diagonal is A000142(n) for n > 0.
Sub-leading diagonal is n*A000142(n) for n > 1.
Sequence in context: A157407 A100400 A285439 * A336601 A241437 A030211
KEYWORD
nonn,tabl
AUTHOR
Donovan Young, Jul 29 2020
STATUS
approved